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ABSTRACT 
Wrapped probability distributions are used in modeling circular data arising from 

physical, medical and social sciences. Wrapped exponential distribution is obtained 
         from wrapping exponential distribution  in a unit sphere.  This work considers the 

       generation of ordinary differential equations whose  solutions are the  probability 
          functions of wrapped exponential distribution. This will help in understanding the 

nature of exponential distribution when wrapped in a circle. Different methods can be 
used in obtaining the solutions to the differential equations generated from the process. 
Some unique patterns were observed which can channel research activities towards the 
area. In conclusion, some expressions were obtained that link the probability functions 
with their respective derivatives.   
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1. INTRODUCTION 
The background, overview and motivation are presented in different subsections. 

1.1. Wrapped Distribution 
 In  probability  and  statistics,  wrapped  probability  distributions  are continuous  probability 

distributions whose random variable are oriented towards a unit sphere. They are used to model 
          circular data that occur in engineering, geological sciences, physics, meteorology and 

computing. According to [1], any given continuous probability distribution can be wrapped in 
the circular form. The wrapped distribution is an attempt to define probability distributions in 
a unique support. This approach originates on a simple fact that a probability distribution on a 
unit circle or sphere can be obtained by wrapping a probability distribution supported on the 

      real line.  The  moments, characteristic functions,  moment generating function, probability 
generating function and entropy of wrapped distributions are similar to their parent (unwrapped) 
distributions. However, the values (measures of central tendencies, variability, skewness and 
kurtosis are quite different. Generally, the flexibility nature of some distributions makes them 
easy candidates for wrapping in order to model circular data that are always encountered in 
statistical analysis, for example, in the estimation of angular systems [2]. The estimation of the 

         parameters of wrapped distributions are usually computational expensive and complex, 
especially in the use of the maximum likelihood estimation and method of Chi-squares [3]. 

    Researchers have proposed several  wrapped distributions.  They  include:  wrapped  normal 
distribution [4] [5] [6], wrapped Fisher-Bingham distribution [7], wrapped Cauchy distribution 

          [8], wrapped gamma distribution [9], wrapped Lomax distribution [10], wrapped Laplace 
distributions [11] and wrapped Lognormal, Logistic, Weibull, and extreme-value distributions 
[12]. It can also be observed that there are instances where a probability distribution can be 
partially wrapped, the wrapped normal distribution is an example [13]. 

1.2 Wrapped Exponential Distribution 
The wrapped exponential distribution is obtained from the wrapping of exponential distribution 
over a unit sphere. The wrapping forced the distribution to assume different support, nature and 
orientation. The details on the distribution can be found in [14] and [15] 

1.3. Motivation and Related Works  
The aim of the paper is use differential calculus to obtain derivatives and ordinary differential 
equations of the probability functions of wrapped exponential distribution. This approach has 
yielded  differential  equations  whose  solutions  are  the  respective  probability  functions  of 

     complex distributions,  interval bounded probability  distributions, simple  distributions and 
convoluted probability distributions. Several differential equations for the probability function 

            of different probability distributions have been proposed as seen in [16-37]. The case for 
wrapped probability distributions have not be reported to the best of the knowledge of the 
authors. It can be seen later that wrapping a distribution can influence the nature of the ODE 
related to it. A clear example can be seen in the case of the hazard function of the exponential 
whose ODE does not exist because of the constant nature of the hazard function. However, it 

    was shown later that the ODE of the wrapped exponential distribution exists. Overall, the 
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solutions to the differential equations can provide an alternative route in understanding the 
studied distributions. 

2. METHODOLOGY 
    The differential calculus was used extensively to convert the probability functions to their 

            respective ordinary differential equations. It can be seen as a departure from established 
methods like estimation and fitting. The ODEs prescribe the orientation, nature and statistical 
direction of the probability functions. Furthermore, elementary algebraic methods were used to 
simplify the expressions, thereby linking the functions with their respective derivatives. The 
differential equations cannot exist outside the domain of the support of the distribution that 
defined it. 

3 RESULTS . 
   Differential  calculus  was applied  to  obtain the  results. Subsequently  some  mathematical 

equations were obtained that link the probability functions together with their derivatives. 

3.1. Probability Density Function 
The pdf of the wrapped exponential distribution defined on a unit circle is given as; 

                                                                      (1) 
   The pdf is defined on a support  and a rate parameter     

The derivative of the pdf yields; 

                                                               (2) 

                         (3) 

                                                                     (4) 
Equation (4) implies that no mode can be estimated since the distribution is oriented to a 

circle. The second derivative of the pdf is obtained; 

                (5) 

                                      (6) 

Again, it can be seen that  

                                     (7) 
Subsequently, the following can be obtained; 
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                                        (8) 

                                    (9)  

Generally, it follows that the divisions of the ODEs follows the same pattern; 

                                  (10) 

Also, the following can be established using equations (1) and (5); 

                                                            (11) 

                                                                   (12) 

The third derivative of the pdf is obtained as; 

                                                         (13) 

Linking the pdf and its third derivative to obtain; 

                                     (14) 

                                            (15) 

Linking the first and its third derivatives of the pdf, that is, using equations (2) and (13) to 
obtain; 

                     (16) 

                                              (17)  

Equations (12) and (17) appear to follow the same pattern. Generally, it can be seen that;  

                      (18) 

Generally, an equation that links equations (10) and (18) is obtained, given as; 

                  (19)  

The fourth derivative of the pdf is obtained as; 
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                                                              (20) 

Linking the first and fourth order differential equations; 

                                                 (21) 

                                                                    (22) 
A generally expression was obtained from equation (22); 

                                      (23) 

 Consequently, equation (23) is linked with equations (10) and (18) to obtain two general 
expressions; 

                    (24) 

                                      (25) 

                           (26) 

3.2. Survival Function 
The sf of the wrapped exponential distribution defined on a unit circle is given as; 

                                                              (27) 

  The sf is defined on a support  and a rate parameter   
The first derivative of the sf yields the negative times the pdf; 

                                                              (28) 

Higher order derivatives are obtained; 

                                                                  (29) 

                                                         (30) 

5

2( )
1

iv ef
e













3   ( ) ( )ivf f     

3( )
( )

ivf
f





 



( )
3

 ( 3)

( )  ;  3,  
( )

n

n
f n n

f





      

3   ( ) ( )

   ( 3) ( 1)
   ( ) ( )  ;  1,3,  
   ( ) ( )

n n

n n
f f n n

f f
 
  

 
     
 

   ( ) ( )

   ( 3) ( 2)

   ( ) ( )  ;  1, 2,  
   ( ) ( )

n n

n n
f f n n

f f
 


  

 
       

 

     ( ) ( ) ( )

     ( 3) ( 1) ( 2)

     ( ) ( ) ( )  ;  1, 2,  
     ( ) ( ) ( )

  n n n

  n n n
  f f f n n

  f f f
    
        

    
        
    

2

2( )
1

e es
e

  


 







0 2   0. 

2( )
1

es
e











  



2

2( )
1

es
e











 



3

2( )
1

es
e











  





Hilary I. Okagbue, Sheila A. Bishop, Pelumi E. Oguntunde, Abiodun A. Opanuga, Ogbu F. Imaga 
and Olasunmbo O. Agboola 

  http://iaeme.com/Home/journal/IJMET   1318 editor@iaeme.com 

                                                                  (31) 

                                                              (32) 

The odd derivatives are negative while the even ones are positive. 
Linking the first and second order differential equations; 

                           (33) 

                                                                          (34)  

Linking the second and third order differential equations; 

                                                              (35) 

                                                    (36) 
Equations (34) and (36) appear to follow the same pattern. Generally, it can be seen that; 

                                                         (37) 
The derivative starts from n = 2, since the ratio of the derivative and the sf was not does not 

appear to follow the same pattern. 
Linking the first and third order differential equations; 

                                                                   (38) 

                                                         (39) 

Linking the second and fourth order differential equations; 

                                                                      (40) 

                                                                 (41) 
Equations (39) and (41) appear to follow the same pattern. Generally, it can be seen that; 

                                                 (42) 

The derivative starts from n = 3, since the ratio of the second derivative and the sf was not 
does not appear to follow the same pattern 

Equations (37) and (42) can be joined in a single expression; 
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                                           (43)  

Linking the first and fourth order differential equations; 

                                                                (44) 

                                                                    (45)  

Linking the second and fifth order differential equations; 

                                                    (46) 

                                                                               (47) 
 Equations (45) and (47) appear to follow the same pattern. Generally, it can be seen that; 

                                             (48)  

The derivative starts from n = 4, since the ratio of the third derivative and the sf was not 
does not appear to follow the same pattern.  

Five general expressions can be obtained using equations (37), (42) and (48); 
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                            (50) 
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                                                (54) 
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3.3. Hazard Function 
The hf of the wrapped exponential distribution defined on a unit circle is given as; 

                                                                    (55) 

  The hf is defined on a support  and a rate parameter  The first derivative 
of the hf yields equation (56); 

                                       (56)  

Factorizing using equation (55); 

                                           (57) 

                                                                 (58)  

The second derivative of the hf can be obtained using equation (57); 

                                            (59) 

                                               (60) 

Factorizing the second derivative using the first derivative; 

                               (61) 

                                                 (62) 

3.4. Reversed Hazard Function 
Reversed hazard function is the ratio of the pdf to the cdf of any given probability distribution. 
The rhf of the wrapped exponential distribution defined on a unit circle is given as; 

                                                         (63) 

  The rhf is defined on a support  and a rate parameter  The first derivative 
of the rhf is given as;  

                                                  (64)  

Factorizing using equation (63); 

                                                    (65) 
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                                                            (66) 

                                                      (67)  
The second derivative of the rhf can be obtained using equation (65); 
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                                                             (69) 
In addition, the second derivative can be written as; 

                                             (70) 

3.5. Odds Function 
Odds function is the ratio of the cdf to the sf of any given probability distribution. The odf of 
the wrapped exponential distribution defined on a unit circle is given as; 

                                                          (71) 

  The rhf is defined on a support  and a rate parameter  The first derivative 
of the rhf is given as; 
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  where     is the hazard function. 

                                                     (75) 

                                                      (76) 

  where     is the reversed hazard function 
The second derivative of odf is obtained and is given as; 

               (77) 
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                               (78) 

                               (79) 

                           (80) 

A simplified classes of derivatives can be obtained using the modified product method of 
differential calculus. 

Given the odds function, the derivative can be expressed as its function as shown in the 
following expressions 

                                          (81) 

                                                  (82) 

                                                       (83) 

Equations (82) and (83) are equations linking the odds function and its derivative, reversed 
hazard function and hazard function. 

Equations (82) is factorized to obtain; 

                                        (84) 

Differentiating equation (84) yields equation (77) 

3.6. Solution of the Proposed ODEs 
Various methods are available in obtaining solutions to ordinary differential equations obtained 
in this article. Analytical, series, semi-analytical and numerical methods are readily available 
in obtaining the solutions to the ODE.  

4 CONCLUSION .  
The authors have proposed some forms of ordered differential equations for the probability 
density function and other related probability functions of wrapped exponential distribution. 
The result has prescribed alternative nature of the probability functions when the solutions to 
the ODEs are obtained by any of the aforementioned methods. Some patterns were obtained. 

          Finally, some unique mathematical equations were obtained that link some probability 
functions with their respective derivatives. 
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